
An Administrative Tool for Distributed Security Task Scheduling
Greg Dunlap and Dipankar Dasgupta

Division of Computer Science
The Department of Mathematical Sciences

The University of Memphis
Memphis, TN 38152

gdunlap@acm.org, ddasgupt@memphis.edu

Abstract:
We developed an administrative tool for
Distributed Security Scheduling of various
security tasks by providing a framework for
integration, coordination, and resource sharing
of several security technologies. It serves as a
wrapper for commercial-off-the-shelf (COTS)
security software. This tool will be useful for
security administrators for specific security
measures and to execute appropriate security
tools remotely in a coordinated fashion.

Introduction

There are many software packages that
are available for computer systems to detect and
report potential or existing computer system
security irregularities. These irregularities could
be linked to attempted or successful attacks,
which may result in system failure or
compromise. Since there is no single or simple
general security technology, and security
breaches could be internal, external, accidental,
or intentional, there are a variety of tools
available to help protect a system (file integrity
checkers, virus scanners, intrusion detectors,
port scanners, etc.). Each package has a specific
purpose, some may overlap, while most don’t.
Each package has strengths and weaknesses that
can potentially be exploited [Ko et al. 1997].

Most of these packages operate
independently, without data exchange or
consistent security policies. Each package may
have been written by a different vendor, perhaps
even competitors in the industry. Since there is
no consistent data exchange between these
packages, administrator intervention is usually
required to analyze the acquired data and make
decisions about what actions may need to be
taken to prevent a compromise, or to recover
from one. Administrator action can however be

too late, or not at all. This may be because the
compromise was too quick for the administrator
to respond, or the administrator failed to
recognize what was happening. Therefore,
existing security measures not only depend on
the available tools, but also on properly trained
administration personnel to execute the
appropriate security countermeasures. As a
result, some computer systems are inherently
less secure than others. There have been many
approaches to a more secure system and this
work is based on an understanding many of
these. [Premkumar 1998, Moriconi 1997, Wulf
1995]

The premise behind the Distributed
Security Scheduler (DSS) is to allow the average
user to schedule multiple security applications
on their computer, and determine a predefined
run time or manually run the application at a
time of their choosing. This allows the user to
rest assured that the programs will run at the
appropriate time. Each DSS has a server built
into it so that the user or administrator can
remotely login to the DSS and change the time
or method by which a program is launched.
This administrative tool is called the Distributed
Security Scheduler Administrator (DSSA).

Proposed Method

 The DSS and DSSA are written in C++
and their graphical user interface (GUI) is built
with the QT 2.3.1 libraries [Trolltech 2001]. QT
is a cross platform C++ library set that has
classes for GUI’s and other data structures
(string, linked list, queue, etc) that allows the
developers to write code with a GUI without
having to worry with the platform concerns, the
same code will compile on Linux, Solaris, Mac
OS X, or Windows with only minor code
changes where file structure is concerned. This

REPORT DOCUMENTATION PAGE Form Approved OMB No.
0704-0188

Public reporting burder for this collection of information is estibated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing
and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burder to Department of Defense, Washington
Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of
law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)
25-01-2002

2. REPORT TYPE 3. DATES COVERED (FROM - TO)
xx-xx-2002 to xx-xx-2002

4. TITLE AND SUBTITLE
An Administrative Tool for Distributed Security Task Scheduling
Unclassified

5a. CONTRACT NUMBER
5b. GRANT NUMBER
5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
Dunlap, Greg ;
Dasgupta, Dipankar ;

5d. PROJECT NUMBER
5e. TASK NUMBER
5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME AND ADDRESS
The University of Memphis
Memphis, TN38152

8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING/MONITORING AGENCY NAME AND ADDRESS
IATAC
3190 Fairview Park Drive
Falls Church, VA22042

10. SPONSOR/MONITOR'S ACRONYM(S)
11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
APUBLIC RELEASE
,
13. SUPPLEMENTARY NOTES
14. ABSTRACT
See report.
15. SUBJECT TERMS
IATAC COLLECTION
16. SECURITY CLASSIFICATION OF: 17. LIMITATION

OF ABSTRACT
Public Release

18.
NUMBER
OF PAGES
9

19. NAME OF RESPONSIBLE PERSON
email from Booz Allen Hamilton (IATAC), (blank)
lfenster@dtic.mil

a. REPORT
Unclassified

b. ABSTRACT
Unclassified

c. THIS PAGE
Unclassified

19b. TELEPHONE NUMBER
International Area Code
Area Code Telephone Number
703767-9007
DSN
427-9007

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39.18

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 074-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data
needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to
Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork
Reduction Project (0704-0188), Washington, DC 20503

1. AGENCY USE ONLY (Leave
blank)

2. REPORT DATE
1/25/2002

3. REPORT TYPE AND DATES COVERED
Report 1/25/2002

4. TITLE AND SUBTITLE
An Administrative Tool for Distributed Security Task
Scheduling

5. FUNDING NUMBERS

6. AUTHOR(S)
Dunlap, Greg; Dasgupta, Dipankar

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
 REPORT NUMBER

The University of Memphis
Memphis, TN 38152

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

IATAC
3190 Fairview Park Drive
Falls Church, VA 22042

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; Distribution unlimited

12b. DISTRIBUTION CODE

A

13. ABSTRACT (Maximum 200 Words)

We developed an administrative tool for Distributed Security Scheduling of various security
tasks by providing a framework for
integration, coordination, and resource sharing of several security technologies. It serves
as a wrapper for commercial-off-the-shelf (COTS) security software. This tool will be
useful for security administrators for specific security
measures and to execute appropriate security tools remotely in a coordinated fashion.

14. SUBJECT TERMS
IATAC Collection, information security, security tasks, COTS

15. NUMBER OF PAGES

8

16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
 OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UNLIMITED

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

way a Windows computer network can have the
schedulers installed on them, and the
administrator tool can be running on a Linux
box and still be able to commutate with them
with out any problems.

By using the QT tool set the size of the
GUI application code is reduced. We can gain a
lot of information about the complexity of the
code by looking at the Halstead metrics
[Pressman 2001] for the source code. Table 1
shows the Halstead variables used for
calculation, and table 2 shows the metrics and
how they are computed from the variables.
Table 1 Halstead variables

n1 = the number of distinct operators
n2 = the number of distinct operands
N1 = the total number of operators
N2 = the total number of operands

Table 2 Halstead metrics

Measure Symbol Formula
Program length N N= N1 + N2

Program vocabulary n n= n1 + n2

Volume V V= N * (LOG2 n)

From this we can derive the Halstead

metrics for the source code written. Table 3
shows the metrics per file, plus the logical lines
of code for the original code written for the
DSS.
Table 3: New Code written for DSS

Filename LOC n N V
schedular.h 74 82 202 1284
schedular.cpp 267 184 1364 10262
execute.h 54 54 122 702
execute.cpp 170 78 968 6084
configdialog.h 230 167 611 4511
configdialog.cpp 1328 367 8163 69545
server.h 24 40 62 329
server.cpp 23 44 102 556
clientsocket.h 25 39 65 343
clientsocket.cpp 743 164 4285 31527
main.cpp 16 28 56 269
Totals 2954 1247 16000 125412

Table 4 gives the metrics for the code written for
the DSSA.

Table 4: New Code written for DSSA
Filename LOC n N V
clientgui.h 56 72 155 956
cleintgui.cpp 245 158 1480 10809
configclientdialog.h 118 119 338 2330
configclientdialog.cpp 1252 334 7451 62466
hostdialog.h 29 50 79 445
hostdialog.cpp 56 74 264 1639
main.cpp 16 32 60 300
Totals 1772 839 9827 78945

The DSS consist of 8 classes. Three of

which are the string classes and associated
classes. The main class is the scheduler class,
this is the main GUI for the program, it has a
server class and an execute class. The execute
class is the code that handles the spawning of the
scheduled programs. This is the only class that
had to be modified for each operation system
because of the differences in file systems and
launching code. The server that the scheduler is
a background server, which passively listens for
new TCP connections, upon receiving a new
connection, the server spawns of a client socket
class, which handles the interactions with the
client. All three of these classes have a
dependency link to an instance of the
configuration dialog, this way all of them can
share the same information. A UML diagram
[Booch 1999] of this can be seen in figure 1.

Figure 1

The DSSA is a simple program that has
three classes. The client GUI handles the main
interface (the three options the user has to run
the DSSA). It has a host dialog, and a
configuration dialog. If the user chooses the
first radio button then the client GUI
immediately launches the configuration dialog
for the client. If the user selects on of the other
radio buttons, then the client GUI turns over
control to the host dialog which builds the popup
box with the hosts or IP address, when the user
double clicks on of them it will launch a
configuration dialog for that host or IP.

Figure 2

Experimentation

When the user first starts up the scheduler and
there is no configuration file present, they will
receive a dialog box (see figure 3) telling them
that no configuration file was found and that all
settings are being set to default. This has two
purposes, the first is that this allows us to thank
the user for using the product, and alerts existing
users that the configuration file was not found.

Figure 3

 The next thing the user sees is the main
scheduler window in its default mode (see figure
4). There are places for five programs to be
scheduled and each of them has a button
associated with it, the button name is by default
Progx, where x is the button number.

Figure 4

There are three menu items on the menu
bar; the first is the configuration menu, which
allows the user to configure the applications to
run, their description, their run mode, and time.
The mode option allows the user to specify what
state the program is in. There are two modes,
running and stopped. In run mode the program
will scheduler all time dependent applications
and launch them at the correct time. In stopped
mode all timers are stopped. There is a color-
associated box at the bottom right to tell the user
what mode the application is currently in. Green
is for not running and red if for running, also the
words will appear in the box as well. The third
menu item is the help box that displays
information about the program. The quit button
on the bottom of the application is the preferred
why to exit.

The configure dialog box (see figure 5) is
launched when the configure pull down menu is
selected from the main application and activated.

Figure 5

Here the user can configure the
scheduler. For each application the process is
the same. The long edit box is the absolute path
for the program to schedule; the browse button
will launch a file dialog (see figure 6) that will
let them search for the program they want to
find. This is analogous to the common file open
dialog seen in most Windows ™ applications.

Figure 6

Once the user has selected the

application they want to run, they must decide
on the run state of it. The choices are user run,
or time run. The default is user run, this means
that the user decides when to run the application
by clicking the program button associated with it
in the main application window. If the user
selects time run, the combo boxes that specify
time become activated and the user can select
and hour, 00, 15, 30, or 45 in the minute box,
and AM or PM (see figure 7). Once that is
complete the user can enter a description of the
program in the description field. By default it is
Progx as seen in the main application. The
description the user enters in will become the
name that is on the button associated with it in
the main application (see figure 8). Clicking
the OK button will save all the configuration
changes and update the main application.

Figure 7

Figure 8

Notice that the AntiVirus button has
been deactivate, this is because it is time
dependent, the IE button is still user click able
so it is enabled (see figure 8).

To put the program into run mode the
user will click on the Mode pull down menu and
select run, this will turn the status box to red and
it will say Running. (See figure 9)

Figure 9

This causes the program to calculate
how much time there is between the system
clock and the time the application needs to run,
this is then converted to m-sec and the timer is
set.
If the user tries to re-configure the application
while it is in run mode they will get a warning
box (see figure 10) telling them to first switch to
the stop mode. If there are no programs that are
time run, then the user cannot switch the
program to run mode.

Figure 10

When the program is started and there is
a configuration file found and there are
applications that are time dependent, then the
application will immediately go into run mode.

When the user starts up the DSSA they
will see a GUI like figure 11. This gives the
administrator three different choices as seen by
the radio buttons.

Figure 11

 If the first radio button is selected then
the administrator is selecting to just look at a
single host. They would then type in the name
of the host, or the IP address and hit the connect
button. If the connection is successful then they
will open up a configuration dialog similar to
figure 5, but with a few differences. Instead of
an OK button, there are Login, Update, and
Close buttons. By clicking Login, the user is
requesting the configuration information from
the server it is connected to (see figure 12).

Figure 12

 As the user makes changes to the
configuration (user or time run, time to run,
description) they can update the DSS they are
connected to by clicking the Update button.
This will immediately apply any changed to the
DSS. When the user is done they can click the
Close button to close the configuration dialog
and close the socket connection.
 If there is a connection problem when
the connect button is clicked a pop-up dialog
will appear like figure 13 letting the user know
what the problem is.

Figure 13

 The second radio button on the DSSA
allows the user to specify a range of IP addresses
to which they want to connect to. So by using
the boxes provided they user can enter in a
sequence like figure 14.

Figure 14

This will provide a pop-up like figure 15.

Figure 15

 By double clicking on one of the IP
addresses the user can then open up a
configuration dialog for that IP address (see
figure 12).

 The third radio button on the DSSA
allows the user to input a list of host names or IP
address they want to specifically look at. In the
line edit the user inputs the host name or IP
address and then click Add (see figure 16).

Figure 16

 This process is then repeated adding
multiple machines to connect to, these host
names are added to the list and are viewable in
the list box below the add button (see figure 17).

Figure 17

 Upon clicking the connect button the
user will be presented with a popup similar to
the IP range (see figure 18), and clicking on one
of the hostnames will open the configuration
dialog (see figure 12).

Figure 18

Analysis

 The DSS and DSSA were tested on
Window 98, 2000, Red Hat Linux, and Debian
Linux and in all instances they were compatible
in their communications and networking. One
of the concerns when running a scheduling
program are the memory and CPU usage issues,
we ran the DSS on Pentium III at 1GHz with
Windows 2000, this machine has 512MB of
Ram. Running the DSS on this machine with all
the program slots filled with time run programs
only yielded a 1,620K-memory usage when on
the screen and only 504K used when minimized.
CPU usage is 0 when idle and the normal usage
for launching a program when the timer times
out. On a Linux machine, the usage numbers are
similar.

Conclusion

 With security on personal and business
computers becoming a crucial issue that can no
longer be ignored. People and companies have
to use more tools to secure their computer, and
these tools are becoming more and more
complex. A tool like the DSS allow them to use

set up their defense once and then rest assured
that it will run when needed. For a large
company with many computers and many
operating systems, this tool will allow them to
run the same program on them all regardless of
the OS, and also login and reconfigure them
from any machine regardless of the OS. For
more information, source code, and binaries
please see http://issrl.cs.memphis.edu/software.

This work was funded by the Defense Advanced
Research Projects Agency
(no. F30602-00-2-0514)

References

Booch, G., Rumbaugh, J., and Jacobson, I., The
Unified Modeling Language User Guide,
Addison Wesley, 1999.

Pressman, R., Software Engineering A

Practitioner's Approach, McGraw Hill, 2001.

TrollTech, “TrollTech QT”, Date Accessed:
November 30, 2001, http://www.trolltech.com

Ko, C., Ruschitzka, M., and Levitt, K.,.
Execution Monitoring of Security-Critical
Programs in Distributed Systems: A
Specification-Based Approach. In Proceedings
of the 1997 IEEE Symposium on Security and
Privacy, Oakland, California, 1997.

Dasgupta, D. and Brian, H. "Mobile security
agents for network traffic analysis", Published
by the IEEE Computer Society Press in the
proceedings of DARPA Information
Survivability Conference and Exposition II
(DISCEX-II), June 12-14, 2001, Anaheim,
California.

Dasgupta, D and Gonzalez, F. "An intelligence
decision support system for intrusion detection
and response", Information Assurance in
Computer Networks, Springer, 2001.

Premkumar T. Devanbu , Philip W-L Fong ,
Stuart G. Stubblebine. “Techniques for trusted
software engineering”, Proceedings of the 1998
international conference on Software
engineering April 1998

Moriconi, M., Qian, X., Riemenschneider, R. A.,
and Gong, L. Secure software architectures. In
Proceedings of the 1997 IEEE Symposium on
Security and Privacy, pages 84--93, May 1997

Wulf, W. A., Wang, C., and Kienzle, D. A new
model of security for distributed systems.
Technical Report CS-95-34, University of
Virginia, August 1995.

